Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.971
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579010

RESUMO

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Assuntos
Antibacterianos , Lipopolissacarídeos , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
ACS Infect Dis ; 10(4): 1137-1151, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606465

RESUMO

Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.


Assuntos
Acenaftenos , DNA Topoisomerase IV , Escherichia coli , Compostos Heterocíclicos com 3 Anéis , Humanos , DNA Topoisomerase IV/genética , DNA Girase/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos/farmacologia
3.
Chemosphere ; 355: 141836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561160

RESUMO

The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.


Assuntos
Hypocreales , Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Proteoma , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/toxicidade , Antibacterianos/química , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
4.
J Agric Food Chem ; 72(15): 8805-8816, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38566515

RESUMO

Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.


Assuntos
Capsicum , Quitosana , Tamarindus , Antioxidantes/farmacologia , Antioxidantes/análise , Polilisina/farmacologia , Polilisina/química , Capsicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Polissacarídeos/farmacologia , Sementes/química , Quitosana/química
5.
PLoS One ; 19(4): e0294474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558002

RESUMO

The growing prevalence of antibiotic resistance has made it imperative to search for new antimicrobial compounds derived from natural products. In the present study, Brevibacillus laterosporus TSA31-5, isolated from red clay soil, was chosen as the subject for conducting additional antibacterial investigations. The fractions exhibiting the highest antibacterial activity (30% acetonitrile eluent from solid phase extraction) were purified through RP-HPLC. Notably, two compounds (A and B) displayed the most potent antibacterial activity against both Escherichia coli and Staphylococcus aureus. ESI-MS/MS spectroscopy and NMR analysis confirmed that compound A corresponds to brevicidine and compound B to brevibacillin. Particularly, brevicidine displayed notable antibacterial activity against Gram-negative bacteria, with a minimum inhibitory concentration (MIC) range of 1-8 µg/mL. On the other hand, brevibacillin exhibited robust antimicrobial effectiveness against both Gram-positive bacterial strains (MIC range of 2-4 µg/mL) and Gram-negative bacteria (MIC range of 4-64 µg/mL). Scanning electron microscopy analysis and fluorescence assays uncovered distinctive morphological alterations in bacterial cell membranes induced by brevicidine and brevibacillin. These observations imply distinct mechanisms of antibacterial activity exhibited by the peptides. Brevicidine exhibited no hemolysis or cytotoxicity up to 512 µg/mL, comparable to the negative control. This suggests its promising therapeutic potential in treating infectious diseases. Conversely, brevibacillin demonstrated elevated cytotoxicity in in vitro assays. Nonetheless, owing to its noteworthy antimicrobial activity against pathogenic bacteria, brevibacillin could still be explored as a promising antimicrobial agent.


Assuntos
Anti-Infecciosos , Bacillus , Brevibacillus , Espectrometria de Massas em Tandem , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
6.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559446

RESUMO

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Otite Média , Infecções Estafilocócicas , Óxido de Zinco , Humanos , Staphylococcus aureus , Radical Hidroxila , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Otite Média/tratamento farmacológico , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
7.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
J Biochem Mol Toxicol ; 38(4): e23706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591869

RESUMO

In this study, our goal was to synthesize novel aryl tacrine derivatives and assess their potential as anticancer, antibacterial agents, and enzyme inhibitors. We adopted a two-step approach, initiating with the synthesis of dibromotacrine derivatives 3 and 4 through the Friedlander reaction. These intermediates underwent further transformation into diarylated tacrine derivatives 3a-e and 4a-e using a Suzuki-Miyaura cross-coupling reaction. Thorough characterization of these novel diarylated tacrines was achieved using various spectroscopic techniques. Our findings highlighted the potent anticancer effects of these innovative compounds across a range of cancer cell lines, including lung, gynecologic, bone, colon, and breast cancers, while demonstrating low cytotoxicity against normal cells. Notably, these compounds surpassed the control drug, 5-Fluorouracil, in terms of antiproliferative activity in numerous cancer cell lines. Moreover, our investigation included an analysis of the inhibitory properties of these novel compounds against various microorganisms and cytosolic carbonic anhydrase enzymes. The results suggest their potential for further exploration as cancer-specific, enzyme inhibitory, and antibacterial therapeutic agents. Notably, four compounds, namely, 5,7-bis(4-(methylthio)phenyl)tacrine (3d), 5,7-bis(4-(trifluoromethoxy)phenyl)tacrine (3e), 2,4-bis(4-(trifluoromethoxy)phenyl)-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-amine (4e), and 6,8-dibromotacrine (3), emerged as the most promising candidates for preclinical studies.


Assuntos
Antineoplásicos , Neoplasias , Feminino , Humanos , Tacrina/farmacologia , Tacrina/química , Antifúngicos/farmacologia , Anticonvulsivantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Estrutura Molecular
9.
J Nanobiotechnology ; 22(1): 161, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589895

RESUMO

Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.


Assuntos
Fotoquimioterapia , Staphylococcus aureus , Animais , Protoporfirinas/farmacologia , Ácido Edético/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
10.
Microb Biotechnol ; 17(4): e14465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593316

RESUMO

Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidases/genética , Endopeptidases/farmacologia , Bacteriófagos/genética , Bactérias Gram-Negativas
11.
Sci Rep ; 14(1): 8325, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594363

RESUMO

Although giant fennel is recognized as a "superfood" rich in phytochemicals with antioxidant activity, research into the antibacterial properties of its fruits has been relatively limited, compared to studies involving the root and aerial parts of the plant. In this study, seven solvents-acetone, methanol, ethanol, ethyl acetate, chloroform, water, and hexane-were used to extract the chemical constituents of the fruit of giant fennel (Ferula communis), a species of flowering plant in the carrot family Apiaceae. Specific attributes of these extracts were investigated using in silico simulations and in vitro bioassays. High-performance liquid chromatography equipped with a diode-array detector (HPLC-DAD) identified 15 compounds in giant fennel extract, with p-coumaric acid, 3-hydroxybenzoic acid, sinapic acid, and syringic acid being dominant. Among the solvents tested, ethanol demonstrated superior antioxidant activity and phenolic and flavonoid contents. F. communis extracts showed advanced inhibition of gram-negative pathogens (Escherichia coli and Proteus mirabilis) and variable antifungal activity against tested strains. Molecular docking simulations assessed the antioxidative, antibacterial, and antifungal properties of F. communis, facilitating innovative therapeutic development through predicted compound-protein interactions. In conclusion, the results validate the ethnomedicinal use and potential of F. communis. This highlights its significance in natural product research and ethnopharmacology.


Assuntos
Ferula , Frutas , Solventes/química , Frutas/química , Antifúngicos/farmacologia , Extratos Vegetais/química , Antioxidantes/química , Simulação de Acoplamento Molecular , Antibacterianos/química , Etanol/análise
12.
Bioorg Chem ; 146: 107318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579613

RESUMO

Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 µg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 µg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/química , Staphylococcus aureus , 60556 , Escherichia coli , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Biofilmes
13.
Proc Natl Acad Sci U S A ; 121(16): e2321498121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593077

RESUMO

In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (Encapsulation) and PA nanostructures + free LJC (Combination). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the Combination broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the Encapsulation provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the Encapsulation strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.


Assuntos
Anti-Infecciosos , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanoestruturas/química
14.
Eur J Med Chem ; 270: 116392, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608408

RESUMO

The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 µg/mL) and hydroxyethyl IDO 10e (0.25-1 µg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.


Assuntos
Antibacterianos , Norfloxacino , Antibacterianos/farmacologia , Antibacterianos/química , Norfloxacino/farmacologia , Bactérias , Permeabilidade da Membrana Celular , DNA/farmacologia , Testes de Sensibilidade Microbiana
15.
Proc Natl Acad Sci U S A ; 121(17): e2322363121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640341

RESUMO

Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.


Assuntos
Aurodox , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/metabolismo , Aurodox/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/metabolismo
16.
BMC Complement Med Ther ; 24(1): 164, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641582

RESUMO

BACKGROUND: Infections caused by Acinetobacter baumannii are becoming a rising public health problem due to its high degree of acquired and intrinsic resistance mechanisms. Bacterial lipases penetrate and damage host tissues, resulting in multiple infections. Because there are very few effective inhibitors of bacterial lipases, new alternatives for treating A. baumannii infections are urgently needed. In recent years, Brassica vegetables have received a lot of attention since their phytochemical compounds have been directly linked to diverse antimicrobial actions by inhibiting the growth of various Gram-positive and Gram-negative bacteria, yeast, and fungi. Despite their longstanding antibacterial history, there is currently a lack of scientific evidence to support their role in the management of infections caused by the nosocomial bacterium, A. baumannii. This study aimed to address this gap in knowledge by examining the antibacterial and lipase inhibitory effects of six commonly consumed Brassica greens, Chinese cabbage (CC), curly and Tuscan kale (CK and TK), red and green Pak choi (RP and GP), and Brussels sprouts (BR), against A. baumannii in relation to their chemical profiles. METHODS: The secondary metabolites of the six extracts were identified using LC-QTOF-MS/MS analysis, and they were subsequently correlated with the lipase inhibitory activity using multivariate data analysis and molecular docking. RESULTS: In total, 99 metabolites from various chemical classes were identified in the extracts. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed the chemical similarities and variabilities among the specimens, with glucosinolates and phenolic compounds being the major metabolites. RP and GP showed the highest antibacterial activity against A. baumannii, followed by CK. Additionally, four species showed a significant effect on the bacterial growth curves and demonstrated relevant inhibition of A. baumannii lipolytic activity. CK showed the greatest inhibition (26%), followed by RP (21%), GP (21%), and TK (15%). Orthogonal partial least squares-discriminant analysis (OPLS-DA) pinpointed 9 metabolites positively correlated with the observed bioactivities. Further, the biomarkers displayed good binding affinities towards lipase active sites ranging from -70.61 to -30.91 kcal/mol, compared to orlistat. CONCLUSION: This study emphasizes the significance of Brassica vegetables as a novel natural source of potential inhibitors of lipase from A. baumannii.


Assuntos
Acinetobacter baumannii , Brassica , Brassica/química , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Espectrometria de Massas em Tandem , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Compostos Fitoquímicos/farmacologia , Lipase
17.
BMC Complement Med Ther ; 24(1): 165, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641781

RESUMO

In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 µg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.


Assuntos
Quitosana , Éteres Metílicos , Nanopartículas , Própole , Própole/farmacologia , Quitosana/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Solventes , Etanol , Nanopartículas/química , Flavonoides
18.
ACS Appl Mater Interfaces ; 16(15): 19571-19584, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564737

RESUMO

Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.


Assuntos
Anti-Infecciosos , Quitosana , Ácido Gálico/análogos & derivados , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Quitosana/química , Peróxido de Hidrogênio/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Cicatrização , Escherichia coli , Biofilmes
19.
ACS Appl Mater Interfaces ; 16(15): 18449-18458, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578282

RESUMO

Developing novel antibacterial strategies has become an urgent requisite to overcome the increasing pervasiveness of antimicrobial-resistant bacteria and the advent of biofilms. Aggregation-induced emission-based photosensitizers (AIE PSs) are promising candidates due to their unique photodynamic and photothermal properties. Bioengineering structure-inherent AIE PSs for developing thin film coatings is still an unexplored area in the field of nanoscience. We have adopted a synergistic approach combining plasma technology and AIE PS-based photodynamic therapy to develop coatings that can eradicate bacterial infections. Here, we loaded AIE PSs within biomimetic bacterium-like particles derived from a probiotic strain, Lactobacillus fermentum. These hybrid conjugates are then immobilized on polyoxazoline-coated substrates to develop a bioinspired coating to fight against implant-associated infections. These coatings could selectively kill Gram-positive and Gram-negative bacteria, but not damage mammalian cells. The mechanistic studies revealed that the coatings can generate reactive oxygen species that can rupture the bacterial cell membranes. The mRNA gene expression of proinflammatory cytokines confirmed that they can modulate infection-related immune responses. Thus, this nature-inspired design has opened a new avenue for the fabrication of a next-generation antibacterial coating to reduce infections and associated burdens.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Fármacos Fotossensibilizantes/química , Antibacterianos/química , Biomimética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Complicações Pós-Operatórias , Mamíferos
20.
Artigo em Inglês | MEDLINE | ID: mdl-38619314

RESUMO

The photocatalytic degradation process of sulfamethoxazole (SMX) using ZnO in aquatic systems has been systematically studied by varying initial SMX concentration from 0 to 15 mgL-1, ZnO dosage from 0 to 4 gL-1 and UV light intensity at the light source from 0 to 18 W(m-lamp length)-1 at natural pH. Almost complete degradations of SMX were achieved within 120 min for the initial SMX concentration ≤15 mgL-1 with ZnO dosage of 3 gL-1 and UV light intensity of 18 W(m-lamp length)-1. The photocatalytic degradation process was found to be interacted with the dissolved oxygen (DO) consumption. With oxygen supply through the gas-liquid free-surface, the DO concentration decreased significantly in the initial SMX degradation phase and increased asymptotically to the saturated DO concentration after achieving about 80% SMX degradation. The change in DO concentration was probably controlled by the oxygen consumption in the formation of oxygenated radical intermediates. A novel dynamic kinetic model based on the fundamental reactions of photocatalysis and the formation of oxygenated radical intermediates was developed. In the modeling the dynamic concentration profiles of OH radical and DO are considered. The dynamics of SMX degradation process by ZnO was simulated reasonably by the proposed model.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Sulfametoxazol , Antibacterianos/química , Óxido de Zinco/química , Oxigênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...